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A Goldstone Mode in the Kawasaki-lsing Model 
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Received June 7, 1993. final April 29. 1994 

The hydrodynamic regime of superfluids is dominated by a Goldstone mode 
corresponding to a spontaneously broken U( 1 ) symmetry. In this article we map 
the Kawasaki-lsing model for a classical lattice gas into a quantum model for 
a superfluid and establish a connection between the normal density fluctuations 
of the first and the Goldstone mode of the second. The fact that the quantum 
model we obtain describes a superfluid derives from an inequality by Penrose 
and Onsager which gives a lower bound to the Bose-Einstein condensate 
density. Mathematically, the Goldstone mode can be described by means of a 
"quantum" extension of the local algebra of the Ising model. The classification 
of its irreducible representations requires an additional U(l) phase factor and 
the corresponding U(l) gauge symmetry is spontaneously broken for all finite 
values of the temperature and of the density. 

KEY W O R D S :  Ising model; Monte Carlo dynamics; spontaneous gauge 
symmetry breaking. 

1. THE PENROSE-ONSAGER INEQUALITY AND THE 
Q U A N T U M  PHASES OF THE ISlNG MODEL 

The problem of computing the long-time asymptotics of the various Monte 
Carlo dynamics for the Ising model is attracting much attention and several 
rigorous techniques have been developed (see, for instance, refs. 1-3). 
Two popular algorithms are the Glauber algorithm, in which one flips one 
spin at a time, and the Kawasaki algorithm, in which the only process 
which is allowed is the exchange of two antiparallel spins on the same 
bond. The Kawasaki algorithm conserves the total magnetization or--in 
the language of the lattice gas interpretation of the Ising model--the total 
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particle number. These Monte Carlo algorithms satisfy the detailed balance 
condition and, as a consequence, the corresponding generators can be 
conjugated to selfoadjoint operators. Such operators can be interpreted as 
quantum mechanical Hamiltonians and some of the problems concerning 
the Monte Carlo dynamics can be reinterpreted as problems of quantum 
many-body theory. In this and in a companion article ts) we describe two 
different ways of readapting concepts and techniques originally developed 
for quantum mechanical problems to the realm of stochastic Ising models. 
In this article we show how the notions of Bose-Einstein condensation, 
of spontaneous breakdown of particle number symmetry, and of Goldstone 
mode shed new light on the slow decay of time-dependent correlation func- 
tions for the Kawasaki dynamics and provide useful nonperturbative tools 
for the study of this problem. In the second article, we show how dynamic 
cluster expansions previously developed in the context of the theory of 
quantum spin systems can be used to compute analytically the long-time 
asymptotics of the Glauber dynamics at high temperature. 

Let us introduce some notation. We consider the ferromagnetic Ising 
model with magnetic field. The Hamiltonian is 

H ( g ) - - -  ~ g.~g.,,-h~ax (1.1) 
( x y )  x 

and is restricted on a large cube A c 7/d with periodic boundary conditions. 
A spin configuration is a map g: A--* {0, 1} and the associated Gibbs 
measure is 

1 
I I G ( a ) = - ~ - - i - ~ e x p [ - f l H ( g )  ], where Z A ( f l ) = ~ " e x p [ - - f l H ( g )  ] (1.2) 

a 

If tP is a classical observable of the form (9(g)= 1--I . . . .  pp~ gx, its expecta- 
tion is 

1 
( (9)A = Z, j ( f l )  ~ (9 (g )  exp[ - f i l l ( a ) ]  (1.3) 

The Glauber dynamics is a stochastic process on the configuration 
space {0, 1} A having pc (a )  as equilibrium distribution and is defined as 
follows: given a configuration a, one picks a site x e A at random and one 
flips the spin in x, obtaining the configuration gX with a probability rate 

p ( a  ~ gx; fl) = A( 1 + exp{ - f l [  H ( g  x) - H ( g )  ] } ) (1.4) 

where A is a normalization constant. This choice satisfies the detailed 
balance condition 

p( a ~ ax; fl ) _ e - #t n~ ~'') - n ' ~  j (1.5) 
p(a-" ~ g; fl) 
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The Kawasaki dynamics is defined in a similar way, except that the only 
process which is allowed is the exchange of two neighboring spins in case 
they are different, the probability p(tr~ tr xy) of such a process being 
proportional to (1 + e x p { - f l [ H ( t r x Y ) - H ( a ) ] } ) .  The equivalence with a 
quantum mechanical problem can be established by observing that thanks 
to the detailed balance condition in (1.5), the generator ~ of any of these 
Monte Carlo Dynamics is such that 

exp[ --,0H(a)] ~e(a, a ')  = s +(a, a') exp[ - f l H ( a ' ) ]  (1.6) 

for all a, tr'. Hence, the operator .~' whose matrix elements are 

~r tr') ---- e ~#/2) t4(~').LP(a, o") e-(p/2) t~t,,') (1.7) 

is self-adjoint and can be interpreted as a quantum mechanical Hamiltonian. 
The main observation of this article is that the quantum mechanical 

interpretation of the Kawasaki-Ising model leads to a quantum liquid 
made up of lattice particles with a hard-core repulsion and obeying Bose 
statistics, in the sense that the corresponding wavefunction is constrained 
to be completely symmetric with respect to permutations. The quantum 
mechanical system we obtain is a superfluid. Superfluidity is a state of 
matter which is characterized by several remarkable properties, such as 
flow without viscosity and the existence of quantized vortices. Due to phase 
cancellations, the physics of the Kawasaki-Ising model is quite different, 
but the mathematical analogy remains. The theory of superfluidity is based 
on the concept of Bose-Einstein condensation, according to which the 
quantum state of zero momentum has a macroscopic occupation number. 
The superfluid associated to the Kawasaki-Ising model is mathematically 
simpler to analyze than real-life systems such as liquid helium. In fact, an 
approximation proposed by Feynmann tg) and widely used for numerical 
studies of superfluid Helium-4 ~]~ turns out to be exact for our model. 
Feynman's approximation is based on a variational ansatz for the ground- 
state wavefunction. In our case, the ground state is given by what we call 
a "Gibbs wavefunction" and can be seen as the square root of the Gibbsian 
probability distribution. The simplifying feature is that this wavefunction 
is exactly of the form of Feynman's ansatz. Feynman's approximation 
attracted the attention of Penrose and Onsager, who wrote an article ~4) in 
1956 to show that this ansatz wavefunction has a Bose-Einstein condensate, 
meaning that . the momentum distribution function has a delta-function 
singularity at zero momentum. The strength of the delta function is called 
condensate density and we denote it by Po- An inequality in Penrose and 
Onsager's paper implies that Po > 0 for all finite values of the magnetic field 
and of the inverse temperature ft. The proof is simple but conceptually 
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deep, as the existence of a Bose-Einstein condensate implies that particle 
number symmetry is broken by the Gibbs wavefunction. In this article, we 
illustrate the notion of spontaneous breakdown of particle number sym- 
metry in some detail and we do not assume that the reader is already 
acquainted with it. For further discussions, we refer to the books of 
Anderson (111 and Nozi~res and Pines. (Is) 

To understand Bose-Einstein condensation for the Ising model, it is 
necessary to introduce a quantum field theory formalism in which the 
commutative algebra ~r of classical observables is replaced by a larger 
noncommutative algebra ~ generated by local field operators ~O(x), ~, +(x). 
These are nonrelativistic fields corresponding to lattice particles with a 
hard-core repulsion. They obey Bose statistics in the sense that the corre- 
sponding wavefunction is constrained to be completely symmetric with 
respect to permutations. The Hilbert space spanned by symmetric wave- 
functions can be identified with the tensor product space J g =  @.,-~A C~, 
where the fiber C ] is spanned by the states 10)x and [ l )x  corresponding 
to configurations in which the site x e A is either empty or occupied. If tr 
is a spin configuration, then l a ) e  J t?(A) is the vector such that 

1(7) = (~) Io'x)_,~ (1 .8)  
X E A  

The field operators @(x) and ~O +(x) are the adjoints of each other and act 
only on the fiber C~. We have 

q;(x) Itr) =6~x I la x) (1.9) 

Introducing also the Pauli operators 

ap'=O(x) +O(x) + 

a (2~= i@(x)--i@+(x) x 

a~=~+(x) O(x)-~(x)r 
(1.10) 

the density operator 

p(x) =@+(x) @(x) (1.11) 

and the Ising operator 

H = -  ~ p(x)p(y)+h~.p(x) (1.12) 
( x y )  x 
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we find that the Glauber and the Kawasaki generators are given by the 
following formulas: 

~ o =  �89 (1 - a ~  ')) e-P•(1 -cr!~ ~) e TM (1.13) 
x 

s �89 ~ (1--6,..Oy) e-PH(1--ox.o.,,)e pH (1.14) 
< x y  > 

respectively, where 6.,..6;, = 5-'.,= ~.2.3 a!,~)a!,, ~)- The Kawasaki generator is 
quite degenerate because it has a large number of equilibrium distributions; 
in fact, any restriction of the Gibbsian distribution to the set of spin con- 
figurations with a fixed total particle number is an equilibrium distribution 
by itself. To remove this degeneracy, one can either fix the total particle 
number or one can consider the operator 

L6:, = #',: + E~o (1.15) 

and evaluate the limit e ~ 0 after the infinite-volume limit has been taken. 
The first procedure is appropriate to the canonical ensemble and the 
second to the grand-canonical formalism. The quantum mechanical many- 
body Hamiltonian associated to the modified Kawasaki generator ~K~ is 

ff'K~ = ePH/2 [ Y, ( 1 -- 6.~. 6y) e -BH( 1 - 6 x - 6 . v )  
L (.~.v) 

cr(~ ')) e -#"(1 -- a(~))] e an/2 (1.16) + y s (1 i 

x _1 

and its (nondegenerate) ground state in the box A is the wavefunction 

[ ~ / ' to)  A = ZA 1#2 E e-(I/2)an(~ ] tY)  ( 1 . 1 7 )  

If d~ = ~O+(xl)... ~, +(x,,) ~b(y,) -.- ff(y,)  is an observable in .~, its infinite- 
volume expectation value in the ground state ]~Po) is 

(( .9)0= lim (~01 (9 [~O)A (1.18) 
IAI ~ ov 

An important observable which is mentioned above is the momentum 
distribution function 

n(k) = ~ er*"~( ~k +(x) ~'(0))o (1.19) 
x 

defined for k e  [ - n ,  ~r) d. 
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T h e o r e m  (Penrose, Onsager). For all finite values off l  and ofh  we 
have that 

P 0 -  lim (~k+(0) ~b(X))o>~e-Pl'-2dt~p2>O (1.20) 
x ~ o c  

where p =  (p(0))  is the particle density. In particular, unless fl is the 
inverse of the phase transition temperature, the momentum distribution 
function has the form n(k) = po6(k) + g(k), where ~(k) is an analytic func- 
tion of k. 

Proof. We have 

< q, +(x) O(0)>oA = < r %1 ~(0) %)A 

= Z j '  Y' exp { - f l  [H(a  x ) 
a : o - o  ~ o-x ~ I 

P E = [ exp( - flh ) ] ( aoax exp [ - ~  (,y, = , 

/> [exp( - f i b  - 2dfl)] (aoax> A 
Hence 

+ H(o'~ ] } 

[ y -  x l  = 1 .4  

(1.21) 

po = lim lim (4+(0 )  ~b(X))oA>~e-Ph-2app z (1.22) 
. x ~ o a ,  A ~ Z  d 

A similar argument is used in ref. 4 to derive Eq. (35) in that paper. 
The classification of the irreducible representations of the quantum 

algebra ~ gives rise to the notion of "quantum phase" for the Ising model 
which is finer than the classical notion of phase related to the classification 
of extremal infinite-volume Gibbs measures. Let us consider the action of 
the group U(1) on the algebra ~ such that ~ ( x ) ~  e-i~O(x). This U(1) 
group is related to particle number symmetry because an observable is 
U(1)-invariant if and only if it corresponds to an operator that does not 
change the total particle number. The U(1) symmetry is spontaneously 
broken in case there is a Bose-Einstein condensate. More precisely, phases 
which are pure in the quantum sense are associated to a phase factor 
e i~ e U( 1 ) such that 

< q,(o)) ~ = ~ e'~ (1.23) 

where ( - ) #  denotes the expectation in such a phase. This follows from the 
fact that, in a pure phase, truncated correlation functions must decay and 
that, due to (1.20) and to the U(1) invariance of the operator ~O +(x)q/(0), 
we have 

1(~(0))#12= lim (~+(x)qJ (0 ) )~=  lim (qJ+(x) qJ(0))o=Po (1.24) 
x ~ o 2 ,  X ~ O C .  
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independently of ff e [0, 2rr). Since the Penrose-Onsager inequality implies 
that Po > 0 for all finite values of fl and h, we conclude that the U( 1 ) sym- 
metry is broken for all these values. 

To see this symmetry-breaking phenomenon in a more constructive 
way, let us introduce the states 

These are not eigenstates of ~K in any cube A of finite volume, but non- 
theless we have 

and 

lim I( ~@1 ~@'>AI 
I A I  ~ c e  

< I ~ I ~ K , I  ~ > A I  ~< const .e le ' ~ -  II IAI 

=6,r (1.26) 

(1.27) 

Hence, asymptotically in the thermodynamic limit [A[ ---, oo and e ---, 0, the 
states [7'~) become a family of degenerate, mutually orthogonal ground 
states of the Kawasaki Hamiltonian which are related by U(1) gauge trans- 
formations. 

Particle number symmetry is thus spontaneously broken in the 
Kawasaki-Ising model. Since U(1) is a continuous Lie group, the 
Goldstone theorem applies t~7~ and the spectrum is gapless. Moreover, 
the nonperturbative techniques of quantum field theory which have been 
developed to illustrate and strengthen the Goldstone theorem are also 
available. These techniques include Ward identities for current-field 
correlation functions, ~3) lower bounds on the spectral gap t~4) (see also 
ref. 3), and various sum rules, t~5' ,6) Also the perturbation theory of models 
with a Goldstone mode relies on these nonperturbative results. In fact, 
since the spectrum of elementary excitations is gapless, perturbative expan- 
sions require systematic resummations and Ward identities play a crucial 
role, as they permit one to identify classes of diagrams which add up to 
zero and would not be possible to resum otherwise. See ref. 17 for an 
illustration of these ideas within the context of the BCS theory of super- 
conductivity, .which is another example of a quantum many-body theory 
with spontaneously broken particle number symmetry. Symmetries are 
always useful, also if hidden and/or spontaneously broken. Parisi and 
Sourlas t~8~ found that conservative Langevin equations for continuum 
analogs of the Kawasaki-Ising model have a hidden supersymmetry. The 
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spontaneously broken U(1 ) symmetry we discuss in this article is of a dif- 
ferent nature, but the hope is that the formal connection between classical 
normal liquids and quantum superfluids can also prove useful. As an 
illustration of the quantum formalism we propose, in the next section we 
discuss three elementary Ward identities and prove a version of the 
Goldstone theorem in the Symanzik formulationJ 7) 

2. G O L D S T O N E  T H E O R E M  A N D  W A R D  IDENTIT IES 

Let us start by introducing some notation. The current operator j(x) 
is defined as follows: 

j , ( x )  = �89 [d/+ (x) ~ (x  -- ei) -- h.c.] + ~e - P ~ [ ~  + (x) t~(x - e;) -- h.c.] e pH 

(2.1) 

where h.c. stands for "Hermitian conjugate." We still denote by p(x) the 
density operator in (1.1 I). The time-dependent versions of these operators 
are given by the following formulas in the original (nonsymmetric) 
representation for the Kawasaki-Ising model: 

p(x, t) = e'WKp(x) e -,~'K, j(x, t) = e'WKj(x) e-'WK (2.2) 

If u(x) is a function on Z a, let 

Viu(x) = u(x + ei) - u(x) (2.3) 

be its gradient along the unit vector ei in the direction of the ith coordinate 
axis. The continuity equation in operator form can be written as follows: 

d 
p(x, t) + Vi j i (x ,  t) = 0 (2.4) 

To verify the continuity equation (2.4), one has to compute a few com- 
mutators and make use of the commutation relation 

[ p ( x ) , ~ + ( x ) O ( y ) + O + ( y ) O ( x ) ] = O + ( x ) O ( y ) - - O + ( y ) O ( x )  (2.5) 

The conserved current with respect to the self-adjoint version of the 
Kawasaki generator in (1.14) is 

j(x, t) = etP/z)Hj(x, t) e-(P/2>" (2.6) 
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Finally, if the modified generator ~K, is used, then the conservation law for 
the current acquires an anomalous term and becomes 

dp(x, t) 
dt 

- - +  ViJi(x, t)=eeIP/zl'[ ~ ( x ) - ~  +(x)] e -(p/z)H (2.7) 

At this point, all the relevant definitions are given and we can derive 
the Ward identities and the corresponding Goldstone theorems in 
Symanzik's form. Here, we discuss only an elementary example. Let us 
consider the correlation function ( T ~ ' ( x ,  t) 4J(0, 0))o,  where p = 0, 1,..., d 
is a space-time index and we set ) ~  We adopt the Heisenberg 
picture so that 

\ S()U(x)e-"~K~O(O))o if t>O 
(TYt'(z)~k(O)/~ if t < 0  (2.8) 

where z = (x, t). The expectation value ( . ) 0  is defined in (1.18). Using the 
continuity equation, we find the following Ward identity: 

V, (Ty~(z)  0(0) ) o 

= e[ ( Te(a/2)H~J(z)e-(a/2)H~k(O) )0 -- ( Te~P/2~Hr +(z) e -(P/-'I"~,(0)) o] 

+ 6( t ) ( [ )  ~ ~b(0) ] )o 

= e[ ~(z) - G(z) ] - O(x) 6(t)(~b(x)) o (2.9) 

where 
G( z ) = (Te(P/2m~J(z) e-CP/2mt~(0))o 

and 
G(z) = ( Te (p/2) n~b + (z) e -la/21Hj/(O ) ) o 

(2.10) 

(2.11) 

Following Symanzik, (v) let us integrate this identity over a large 
cylinder 6 a in space-time which contains the origin, and has the bottom 
basis on the plane t = - T and the top on the plane t = T. By using (2.9) 
and integrating by parts, we find 

lim ~o ( T~l~(x' t) ~(0, O) ) o d o , =  - x / ~ o  (2.12) 
e ~ 0  S 

Hence, (TyU(x, t ) r  is not a summable function in L*(~_dx R). 
Taking a Fourier transform of both members of (2.9), we find 

icoF~ k )+  ~. (l-eikOF~(og, k)=e[G(co, k ) -d (og ,  k ) ]+x /~o  
i=l , . . . ,d  

(2.13) 
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Here 

Fu(o), k) = f dt ~ e-"~ T~I~(X; t) ~k(0))o 
x 

(2.14) 

G(o), k) = f dt ~ e-i'~ x) (2.15) 
x 

and 

k) = I dt ~ e -i'~ -ik .x~(t, X) (2.16) ~(o9, 
x 

Setting oa = 0 and k = 0, we obtain a second Ward identity 

G(0, 0) - (~(0, 0)=e-' ~ o  (2.17) 

which shows that the mass gap of the generator '~'c~ tends to zero as e ~ 0. 
Another important Ward identity is the following: 

io)Kojo); k) + ~ (1-eik') K,jo); k)=O (2.18) 
i = l , . . . , d  

where K~v(o); k) is the Fourier transform of the current--current correlation 
function ( Tf'(x; t) fl'(0; 0). Setting ko = co, we find the following formula: 

( Kj, j o a ; k ) =  6~,v o)2+k2j(Ko+Kto)2+k2)+O,~((oa'+k2)2 ) (2.19) 

where we are assuming that the lack of isotropy of the lattice 7/d is reflected 
only in the error term O.v((oa 2 + k2)2). In the case of BCS superconductors, 
the fact that K0 q:0 is related to the Meissner effect. (19~ Also in our case, 
we ought to have Ko :/:0. In fact, the density-density correlation func- 
t i on -wh ich  corresponds to the case p = v = 0-- is  not summable, as can be 
argued by the fact that the quantity 

lim ~ (p(x) e-"~K'p(O)) (2.20) 
~ 0  x 

is independent of t due to particle number conservation. (~ 
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